
Inside the Progress OpenEdge

RDBMS

Before-Images, Checkpoints, Crashes

Gus Björklund

© 2013 Progress Software Corporation. All rights reserved. 2

Abstract

In this talk we examine the "before-image file", what it's for, how it works,

and how you can configure it properly. You might get answers to questions

that have been troubling people for over 25 * 10-2 centuries:

 Why doesn't the before-image file have before-images?

 Why aren't the data on disk ever current?

 What are checkpoints?

 Why do we have them?

 When your system crashes (and they all do eventually) how can the

RDBMS recreate all the data that were lost in the crash and restore your

database to a consistent state?

Engine Crew

Builders of The Best RDBMS
on the Third Planet From The Sun

The OpenEdge RDBMS is brought to you by

© 2013 Progress Software Corporation. All rights reserved. 4

The So-Called "Before-Image" File Is NOT

 Does not really contain before images

 It has a record of all recent database changes

 The data are sufficient to:

• Undo or roll back transactions

• Perform crash recovery

© 2013 Progress Software Corporation. All rights reserved. 5

Block’s DBKEY Type Chain Backup Ctr

Next DBKEY in Chain Block Version Number

Free Space
Free

Dirs. Rec 0 Offset Rec 1 Offset

Rec 2 Offset Rec n Offset

Num

Dirs.

Contiguous Free Space

Record 0

Record 2

Record 1

A Typical Data Block – for Records

Let's Do an Update

© 2013 Progress Software Corporation. All rights reserved. 7

Data Block – Before the Update

gus

DISK (Data Extent)

MEMORY (Buffer Pool)

“Gus”

Record

gus

© 2013 Progress Software Corporation. All rights reserved. 8

Data Block – After

Carol

DISK (Data Extent)

MEMORY (Buffer Pool)

“Carol”

Updated Record

gus

© 2013 Progress Software Corporation. All rights reserved. 9

But… We Changed Memory Only – Not Disk

 What if someone unplugs server to plug in vacuum cleaner?

 What if we want to undo (roll back)?

 What if we make several more changes and only one block of a

fragmented record chain is written to disk to make room in the buffer pool?

 What if an asteroid wipes out all the data centers?

© 2013 Progress Software Corporation. All rights reserved. 10

But We Changed Memory Only – No Disk Write

 What if someone unplugs server to plug in vacuum cleaner?

• The change will be lost

 What if we want to undo (rollback) ?

• We don’t know the old value or how to undo

 What if we make several more changes and only one block of a

fragmented record chain is written to disk to make room in the buffer pool ?

• The database will be corrupted

 What if an asteroid wipes out all the data centers?

• The database will disappear completely

These are all bad things (tm)

Transaction Logging to the Rescue!

© 2013 Progress Software Corporation. All rights reserved. 13

Two Transaction Logs

Original

Database
Transactions

make changes

Changed

Database

Redo-Log

(After-Image Journals)

Undo-Redo Log

(Before-Image Log)

BI

AI

db db’

© 2013 Progress Software Corporation. All rights reserved. 14

T2: begin

T1: begin

T1: action 1

T1: action 2

T1: action 3

T3: begin

T1: action 4

T3: action 1

T3: action 2

T2: action 1

T1: end

T2: action 2

T3: end

T2: action 3

T2: action 4

Actions by Transaction 1

Transaction Log Records (aka “Notes”)

Actions by Transaction 2

Actions by Transaction 3

Time

Notes form a complete history of everything

© 2013 Progress Software Corporation. All rights reserved. 15

Log Records (Notes)

 Generated for every change to database

 Each describes exactly one change to one database block

• Almost - there are log records that describe changes to purely memory-

resident data structures like the transaction table

 Apply only to specific version number of block

 Some operations require more than one change

• Index splits, multi-block records

 Written in same order changes are executed.

 Notes from concurrent transactions are mixed together

© 2013 Progress Software Corporation. All rights reserved. 16

Undo-Redo (BI) Log Records

 Each log record (or “note”) contains:

• Data area number

• Database block number (its dbkey)

• Database block's version number

• Note type – specifies what operation to perform

• Any information needed to undo the operation

– In case we have to roll back

• Any information needed to redo the operation

– In case we lose the result before writing to disk

Let's Do an Update, with Notes this Time

© 2013 Progress Software Corporation. All rights reserved. 18

Block’s DBKEY Type Chain Backup Ctr

Next DBKEY in Chain Block Version Number

Free Space
Free

Dirs. Rec 0 Offset Rec 1 Offset

Rec 2 Offset Rec n Offset

Num

Dirs.

Contiguous Free Space

Record 0

Record 2

Record 1

A Typical Data Block – for Us to Update

© 2013 Progress Software Corporation. All rights reserved. 19

Block’s DBKEY Type Chain Backup Ctr

Next DBKEY in Chain Block Version Number

Free Space
Free

Dirs. Rec 0 Offset Rec 1 Offset

Rec 2 Offset Rec n Offset

Num

Dirs.

Contiguous Free Space

Record 0

Record 2

Record 1

A Typical Data Block – for Us to Update

© 2013 Progress Software Corporation. All rights reserved. 20

Updating a Block – Revisited

Gus

Version 1

of Block 3

© 2013 Progress Software Corporation. All rights reserved. 21

Updating a Block – Revisited

DO

Log record, block 3, version 2

Gus

Version 1

of Block 3

© 2013 Progress Software Corporation. All rights reserved. 22

Updating a Block – Revisited

DO

Log record, block 3, version 2

Gus

Version 1

of Block 3

Operation produces

new data values

new version

Carol

Version 2

of Block 3

© 2013 Progress Software Corporation. All rights reserved. 23

UNDO

Log record, block 3, version 2

Updating a Block – Undoing

Carol

Version 2

of Block 3

Log record, block 3, version 3

Operation produces

original data values

but new version

Putting things back the way

they were before you touched them

Gus

Version 3

of Block 3

© 2013 Progress Software Corporation. All rights reserved. 24

Houston, We Have a Problem!

 Notice that we did the change just in memory

 We are logging the changes, and we can undo if necessary, but

• How about writing changes to disk?

• When?

• What if server unplugged?

The Checkpoint Process

© 2013 Progress Software Corporation. All rights reserved. 27

Complete Database State – in 3 Part Harmony

Transaction

Log

(Bi Extents)

Updated

Memory

(Buffer Pool)

Old Data

on Disk

(Data Extents)

© 2013 Progress Software Corporation. All rights reserved. 28

Database Checkpoints

 We have memory resident database state (updates are done in memory)

 Must update disk resident data once in a while

 Definition:

A checkpoint is a process for making what is on disk consistent with the

changed or updated database parts that are present only in memory

It is a process, not an event

© 2013 Progress Software Corporation. All rights reserved. 29

Benefits of Checkpointing (1)

 Smaller undo-redo (BI) transaction logs

• Space can be re-used when the recovery information is no longer needed

 Example:

• 1,000,000 transactions

• 350 bytes logged per transaction

© 2013 Progress Software Corporation. All rights reserved. 30

Benefits of Checkpointing (1)

 Smaller undo-redo (BI) transaction logs

• Space can be re-used when the recovery information is no longer needed

 Example:

• 1,000,000 transactions

• 350 bytes logged per transaction

• So:

– About 350 megabytes of log data

– Can execute thousand times more transactions a day

– How much space will that take?

– Most transactions are larger

© 2013 Progress Software Corporation. All rights reserved. 31

Benefits of Checkpointing (1)

 Smaller undo-redo (BI) transaction logs

• Space can be re-used when the recovery information is no longer needed

 Example:

• 1,000,000 transactions

• 350 bytes logged per transaction

• So:

– About 350 megabytes of log data

– Could execute a thousand times more transactions a day

– How much space will that take?  350 gigabytes

– Most transactions are larger

© 2013 Progress Software Corporation. All rights reserved. 32

Benefits of Checkpointing (2)

 Shorter Recovery time

• Fewer changes must be repeated when a crash occurs

 Example:

• 1,000,000 transactions

• 3.2 disk io’s per transaction

• assume disks do about 100 io’s per second

• Arrival rate of seconds is fixed at 86,400 per day

• So:

© 2013 Progress Software Corporation. All rights reserved. 33

Benefits of Checkpointing (2)

 Shorter Recovery time

• Few changes must be repeated when a crash occurs

 Example:

• 1,000,000 transactions

• 3.2 disk i/o’s per transaction

• Modern disks do 100 io’s per second

• Arrival rate of seconds is fixed at 86,400 per day

• So:

– 320,000 seconds (3.7 days) to recover

– What if you had to recover a thousand times more?

© 2013 Progress Software Corporation. All rights reserved. 34

Drawbacks of Checkpointing

 Not free!

• Requires (some) extra processing

• Requires (some) extra io

• Takes (some) time

• Can freeze all database updates for a (short) time

Well worth the costs!

© 2013 Progress Software Corporation. All rights reserved. 35

Checkpoint Process

 There are 3 phases to a checkpoint

© 2013 Progress Software Corporation. All rights reserved. 36

Checkpoint Process

 There are 3 phases to a checkpoint

• Beginning

• Middle

• And End

© 2013 Progress Software Corporation. All rights reserved. 37

Checkpoint Phase 1 (Begin)

 Unwritten BI and AI buffers forced to disk

 All dirty blocks placed on checkpoint queue

 Next BI cluster opened

• (May require formatting if new)

B E Checkpoint Timeline

Cluster 1

© 2013 Progress Software Corporation. All rights reserved. 38

Checkpoint Phase 1 (Begin)

 Unwritten BI and AI buffers forced to disk

 All dirty blocks placed on checkpoint queue

 Next BI cluster opened

Cluster 2

B E Checkpoint Timeline

cpq

Cluster 1

© 2013 Progress Software Corporation. All rights reserved. 39

Checkpoint Phase 2 (Middle)

 Asynchronous Page Writers take blocks off the Checkpoint Queue and

write them to disk

 APW’s pace themselves

Clus ter 2

B E Checkpoint Timeline

cpq
    

Cluster 1

© 2013 Progress Software Corporation. All rights reserved. 40

Checkpoint Phase 3 (End)

 As cluster approaches full, all blocks from checkpoint queue have been

written to disk

 Checkpoint queue now empty

Cluster 2

B E Checkpoint Timeline

cpq
          

Cluster 1 Cluster 1

© 2013 Progress Software Corporation. All rights reserved. 41

Checkpoint Phase 3 (Alternate Ending)

 Cluster might fill before queue emptied

 Now we have to flush remaining blocks

 Delay! AND: fdatasync() calls take more time than normal – more delay

B E Checkpoint Timeline

cpq
          

Cluster 1 Cluster 2

Crash Recovery

© 2013 Progress Software Corporation. All rights reserved. 43

Complete Database State – in 3 Part Harmony

Transaction

Log

(Bi Extents)

Updated

Memory

(Buffer Pool)

Old Data

on Disk

(Data Extents)

© 2013 Progress Software Corporation. All rights reserved. 44

Transaction

Log

(Bi Extents)

Updated

Memory

(Buffer Pool)

Old Data

on Disk

(Data Extents)

Disaster Strikes

© 2013 Progress Software Corporation. All rights reserved. 45

Transaction

Log

(Bi Extents)

Updated

Memory

(Buffer Pool)

Old Data

on Disk

(Data Extents)

Reconstructive Surgery

© 2013 Progress Software Corporation. All rights reserved. 46

Before-Image Log Records (Notes)

Redo Starts:

one or more clusters before

end of log

Crash Recovery Processing – Redo Phase

© 2013 Progress Software Corporation. All rights reserved. 47

Before-Image Log Records (Notes)

Ends at Point of Crash

Redo Phase – Forward Scan
Redo Starts:

one or more clusters before

end of log

Crash Recovery Processing – Redo Phase

© 2013 Progress Software Corporation. All rights reserved. 48

Redo a Change

REDO

Log record, block 3, version 2

Gus

Version 1

of Block 3

Redo produces

new data values

new version

Carol

Version 2

of Block 3

© 2013 Progress Software Corporation. All rights reserved. 49

Not Redoing a Change

Nothing to do

We already have

version 2 of the block

Note is skipped

REDO

Log record, block 3, version 2

Carol

Version 2

of Block 3

© 2013 Progress Software Corporation. All rights reserved. 50

Complete Database State - 3 Parts

Transaction

Log

(Bi Extents)

Updated

Memory

(Buffer Pool)

Old Data

on Disk

(Data Extents)

© 2013 Progress Software Corporation. All rights reserved. 51

Redo Phase – Forward Scan
Redo Starts:

one or more clusters before

end of log

Crash Recovery Processing – Redo Phase Completed

Before-Image Log Records (Notes)

Ends at Point of Crash

© 2013 Progress Software Corporation. All rights reserved. 52

Before-Image Log Records (Notes)

Undo Ends:

start of oldest

Active Transaction

Log Ends at Point of Crash

Redo Phase – Forward Scan

Undo Phase – Backward Scan

Redo Starts:

one or more clusters before

end of log

Crash Recovery Processing – Undo Phase

Now We are Good

Everything is Back the Way it Was

Before You Touched it

© 2013 Progress Software Corporation. All rights reserved. 55

That’s all we have

time for today, except

© 2013 Progress Software Corporation. All rights reserved. 56

Answers

email: gus@progress.com

