
Inside the Progress OpenEdge

RDBMS

Before-Images, Checkpoints, Crashes

Gus Björklund

© 2013 Progress Software Corporation. All rights reserved. 2

Abstract

In this talk we examine the "before-image file", what it's for, how it works,

and how you can configure it properly. You might get answers to questions

that have been troubling people for over 25 * 10-2 centuries:

 Why doesn't the before-image file have before-images?

 Why aren't the data on disk ever current?

 What are checkpoints?

 Why do we have them?

 When your system crashes (and they all do eventually) how can the

RDBMS recreate all the data that were lost in the crash and restore your

database to a consistent state?

Engine Crew

Builders of The Best RDBMS
on the Third Planet From The Sun

The OpenEdge RDBMS is brought to you by

© 2013 Progress Software Corporation. All rights reserved. 4

The So-Called "Before-Image" File Is NOT

 Does not really contain before images

 It has a record of all recent database changes

 The data are sufficient to:

• Undo or roll back transactions

• Perform crash recovery

© 2013 Progress Software Corporation. All rights reserved. 5

Block’s DBKEY Type Chain Backup Ctr

Next DBKEY in Chain Block Version Number

Free Space
Free

Dirs. Rec 0 Offset Rec 1 Offset

Rec 2 Offset Rec n Offset

Num

Dirs.

Contiguous Free Space

Record 0

Record 2

Record 1

A Typical Data Block – for Records

Let's Do an Update

© 2013 Progress Software Corporation. All rights reserved. 7

Data Block – Before the Update

gus

DISK (Data Extent)

MEMORY (Buffer Pool)

“Gus”

Record

gus

© 2013 Progress Software Corporation. All rights reserved. 8

Data Block – After

Carol

DISK (Data Extent)

MEMORY (Buffer Pool)

“Carol”

Updated Record

gus

© 2013 Progress Software Corporation. All rights reserved. 9

But… We Changed Memory Only – Not Disk

 What if someone unplugs server to plug in vacuum cleaner?

 What if we want to undo (roll back)?

 What if we make several more changes and only one block of a

fragmented record chain is written to disk to make room in the buffer pool?

 What if an asteroid wipes out all the data centers?

© 2013 Progress Software Corporation. All rights reserved. 10

But We Changed Memory Only – No Disk Write

 What if someone unplugs server to plug in vacuum cleaner?

• The change will be lost

 What if we want to undo (rollback) ?

• We don’t know the old value or how to undo

 What if we make several more changes and only one block of a

fragmented record chain is written to disk to make room in the buffer pool ?

• The database will be corrupted

 What if an asteroid wipes out all the data centers?

• The database will disappear completely

These are all bad things (tm)

Transaction Logging to the Rescue!

© 2013 Progress Software Corporation. All rights reserved. 13

Two Transaction Logs

Original

Database
Transactions

make changes

Changed

Database

Redo-Log

(After-Image Journals)

Undo-Redo Log

(Before-Image Log)

BI

AI

db db’

© 2013 Progress Software Corporation. All rights reserved. 14

T2: begin

T1: begin

T1: action 1

T1: action 2

T1: action 3

T3: begin

T1: action 4

T3: action 1

T3: action 2

T2: action 1

T1: end

T2: action 2

T3: end

T2: action 3

T2: action 4

Actions by Transaction 1

Transaction Log Records (aka “Notes”)

Actions by Transaction 2

Actions by Transaction 3

Time

Notes form a complete history of everything

© 2013 Progress Software Corporation. All rights reserved. 15

Log Records (Notes)

 Generated for every change to database

 Each describes exactly one change to one database block

• Almost - there are log records that describe changes to purely memory-

resident data structures like the transaction table

 Apply only to specific version number of block

 Some operations require more than one change

• Index splits, multi-block records

 Written in same order changes are executed.

 Notes from concurrent transactions are mixed together

© 2013 Progress Software Corporation. All rights reserved. 16

Undo-Redo (BI) Log Records

 Each log record (or “note”) contains:

• Data area number

• Database block number (its dbkey)

• Database block's version number

• Note type – specifies what operation to perform

• Any information needed to undo the operation

– In case we have to roll back

• Any information needed to redo the operation

– In case we lose the result before writing to disk

Let's Do an Update, with Notes this Time

© 2013 Progress Software Corporation. All rights reserved. 18

Block’s DBKEY Type Chain Backup Ctr

Next DBKEY in Chain Block Version Number

Free Space
Free

Dirs. Rec 0 Offset Rec 1 Offset

Rec 2 Offset Rec n Offset

Num

Dirs.

Contiguous Free Space

Record 0

Record 2

Record 1

A Typical Data Block – for Us to Update

© 2013 Progress Software Corporation. All rights reserved. 19

Block’s DBKEY Type Chain Backup Ctr

Next DBKEY in Chain Block Version Number

Free Space
Free

Dirs. Rec 0 Offset Rec 1 Offset

Rec 2 Offset Rec n Offset

Num

Dirs.

Contiguous Free Space

Record 0

Record 2

Record 1

A Typical Data Block – for Us to Update

© 2013 Progress Software Corporation. All rights reserved. 20

Updating a Block – Revisited

Gus

Version 1

of Block 3

© 2013 Progress Software Corporation. All rights reserved. 21

Updating a Block – Revisited

DO

Log record, block 3, version 2

Gus

Version 1

of Block 3

© 2013 Progress Software Corporation. All rights reserved. 22

Updating a Block – Revisited

DO

Log record, block 3, version 2

Gus

Version 1

of Block 3

Operation produces

new data values

new version

Carol

Version 2

of Block 3

© 2013 Progress Software Corporation. All rights reserved. 23

UNDO

Log record, block 3, version 2

Updating a Block – Undoing

Carol

Version 2

of Block 3

Log record, block 3, version 3

Operation produces

original data values

but new version

Putting things back the way

they were before you touched them

Gus

Version 3

of Block 3

© 2013 Progress Software Corporation. All rights reserved. 24

Houston, We Have a Problem!

 Notice that we did the change just in memory

 We are logging the changes, and we can undo if necessary, but

• How about writing changes to disk?

• When?

• What if server unplugged?

The Checkpoint Process

© 2013 Progress Software Corporation. All rights reserved. 27

Complete Database State – in 3 Part Harmony

Transaction

Log

(Bi Extents)

Updated

Memory

(Buffer Pool)

Old Data

on Disk

(Data Extents)

© 2013 Progress Software Corporation. All rights reserved. 28

Database Checkpoints

 We have memory resident database state (updates are done in memory)

 Must update disk resident data once in a while

 Definition:

A checkpoint is a process for making what is on disk consistent with the

changed or updated database parts that are present only in memory

It is a process, not an event

© 2013 Progress Software Corporation. All rights reserved. 29

Benefits of Checkpointing (1)

 Smaller undo-redo (BI) transaction logs

• Space can be re-used when the recovery information is no longer needed

 Example:

• 1,000,000 transactions

• 350 bytes logged per transaction

© 2013 Progress Software Corporation. All rights reserved. 30

Benefits of Checkpointing (1)

 Smaller undo-redo (BI) transaction logs

• Space can be re-used when the recovery information is no longer needed

 Example:

• 1,000,000 transactions

• 350 bytes logged per transaction

• So:

– About 350 megabytes of log data

– Can execute thousand times more transactions a day

– How much space will that take?

– Most transactions are larger

© 2013 Progress Software Corporation. All rights reserved. 31

Benefits of Checkpointing (1)

 Smaller undo-redo (BI) transaction logs

• Space can be re-used when the recovery information is no longer needed

 Example:

• 1,000,000 transactions

• 350 bytes logged per transaction

• So:

– About 350 megabytes of log data

– Could execute a thousand times more transactions a day

– How much space will that take? 350 gigabytes

– Most transactions are larger

© 2013 Progress Software Corporation. All rights reserved. 32

Benefits of Checkpointing (2)

 Shorter Recovery time

• Fewer changes must be repeated when a crash occurs

 Example:

• 1,000,000 transactions

• 3.2 disk io’s per transaction

• assume disks do about 100 io’s per second

• Arrival rate of seconds is fixed at 86,400 per day

• So:

© 2013 Progress Software Corporation. All rights reserved. 33

Benefits of Checkpointing (2)

 Shorter Recovery time

• Few changes must be repeated when a crash occurs

 Example:

• 1,000,000 transactions

• 3.2 disk i/o’s per transaction

• Modern disks do 100 io’s per second

• Arrival rate of seconds is fixed at 86,400 per day

• So:

– 320,000 seconds (3.7 days) to recover

– What if you had to recover a thousand times more?

© 2013 Progress Software Corporation. All rights reserved. 34

Drawbacks of Checkpointing

 Not free!

• Requires (some) extra processing

• Requires (some) extra io

• Takes (some) time

• Can freeze all database updates for a (short) time

Well worth the costs!

© 2013 Progress Software Corporation. All rights reserved. 35

Checkpoint Process

 There are 3 phases to a checkpoint

© 2013 Progress Software Corporation. All rights reserved. 36

Checkpoint Process

 There are 3 phases to a checkpoint

• Beginning

• Middle

• And End

© 2013 Progress Software Corporation. All rights reserved. 37

Checkpoint Phase 1 (Begin)

 Unwritten BI and AI buffers forced to disk

 All dirty blocks placed on checkpoint queue

 Next BI cluster opened

• (May require formatting if new)

B E Checkpoint Timeline

Cluster 1

© 2013 Progress Software Corporation. All rights reserved. 38

Checkpoint Phase 1 (Begin)

 Unwritten BI and AI buffers forced to disk

 All dirty blocks placed on checkpoint queue

 Next BI cluster opened

Cluster 2

B E Checkpoint Timeline

cpq

Cluster 1

© 2013 Progress Software Corporation. All rights reserved. 39

Checkpoint Phase 2 (Middle)

 Asynchronous Page Writers take blocks off the Checkpoint Queue and

write them to disk

 APW’s pace themselves

Clus ter 2

B E Checkpoint Timeline

cpq

Cluster 1

© 2013 Progress Software Corporation. All rights reserved. 40

Checkpoint Phase 3 (End)

 As cluster approaches full, all blocks from checkpoint queue have been

written to disk

 Checkpoint queue now empty

Cluster 2

B E Checkpoint Timeline

cpq

Cluster 1 Cluster 1

© 2013 Progress Software Corporation. All rights reserved. 41

Checkpoint Phase 3 (Alternate Ending)

 Cluster might fill before queue emptied

 Now we have to flush remaining blocks

 Delay! AND: fdatasync() calls take more time than normal – more delay

B E Checkpoint Timeline

cpq

Cluster 1 Cluster 2

Crash Recovery

© 2013 Progress Software Corporation. All rights reserved. 43

Complete Database State – in 3 Part Harmony

Transaction

Log

(Bi Extents)

Updated

Memory

(Buffer Pool)

Old Data

on Disk

(Data Extents)

© 2013 Progress Software Corporation. All rights reserved. 44

Transaction

Log

(Bi Extents)

Updated

Memory

(Buffer Pool)

Old Data

on Disk

(Data Extents)

Disaster Strikes

© 2013 Progress Software Corporation. All rights reserved. 45

Transaction

Log

(Bi Extents)

Updated

Memory

(Buffer Pool)

Old Data

on Disk

(Data Extents)

Reconstructive Surgery

© 2013 Progress Software Corporation. All rights reserved. 46

Before-Image Log Records (Notes)

Redo Starts:

one or more clusters before

end of log

Crash Recovery Processing – Redo Phase

© 2013 Progress Software Corporation. All rights reserved. 47

Before-Image Log Records (Notes)

Ends at Point of Crash

Redo Phase – Forward Scan
Redo Starts:

one or more clusters before

end of log

Crash Recovery Processing – Redo Phase

© 2013 Progress Software Corporation. All rights reserved. 48

Redo a Change

REDO

Log record, block 3, version 2

Gus

Version 1

of Block 3

Redo produces

new data values

new version

Carol

Version 2

of Block 3

© 2013 Progress Software Corporation. All rights reserved. 49

Not Redoing a Change

Nothing to do

We already have

version 2 of the block

Note is skipped

REDO

Log record, block 3, version 2

Carol

Version 2

of Block 3

© 2013 Progress Software Corporation. All rights reserved. 50

Complete Database State - 3 Parts

Transaction

Log

(Bi Extents)

Updated

Memory

(Buffer Pool)

Old Data

on Disk

(Data Extents)

© 2013 Progress Software Corporation. All rights reserved. 51

Redo Phase – Forward Scan
Redo Starts:

one or more clusters before

end of log

Crash Recovery Processing – Redo Phase Completed

Before-Image Log Records (Notes)

Ends at Point of Crash

© 2013 Progress Software Corporation. All rights reserved. 52

Before-Image Log Records (Notes)

Undo Ends:

start of oldest

Active Transaction

Log Ends at Point of Crash

Redo Phase – Forward Scan

Undo Phase – Backward Scan

Redo Starts:

one or more clusters before

end of log

Crash Recovery Processing – Undo Phase

Now We are Good

Everything is Back the Way it Was

Before You Touched it

© 2013 Progress Software Corporation. All rights reserved. 55

That’s all we have

time for today, except

© 2013 Progress Software Corporation. All rights reserved. 56

Answers

email: gus@progress.com

